sábado, 13 de junho de 2020

ESTE PARADOXO  DEGRACELI PROPÕE QUE EXISTE ESTADOS INTERMEDIÁRIOS DA MATÉRIA ENTRE SÓLIDOS-LÍQUIDOS, LÍQUIDOS GASOSOS, SÓLIDOS-CONDENSADOS, PLASMA-
GASOSOS,


OU SEJA, É COMO NUM PONTO CRÍTICO ONDE O ESPEMATOZÓIDE E O ÓVULO AINDA NÃO SE TRANSFORMARÃO EM ÓVULO, ONDE SE TEM UM ESTADO ONDE OS TR~ES AINDA ESTÃO PRESENTES,

OU SEJA, NÃO SE TEM A CERTEZA DO QUE O QUE É, E QUEM É QUEM, OU SEJA, É A INCERTEZA SE JÁ É OUTRO OU AINDA É ELE.


sexta-feira, 12 de junho de 2020


INCERTEZA DE GRACELI  PARA ESTADO QUÂNTICO  EMARANHADO.


OU SEJA, NÃO SE PODE CONHECER OS DOIS AO MESMO TEMPO, QUANDO SE APROXIMA DE UM O OUTRO DIMINUI, E VICE-VERSA.

O MESMO ACONTECE COM OS ESTADO DA MATÉRIA, OU SEJA, NÃO SE PODE CONHECER COM EXATIDÃO NUM CONTEXTO LIMITE ENTRE DOIS ESTADOS, COMO ENTRE SÓLIDOS E LÍQUIDOS, LÍQUIDOS E GASOSOS, E ENTRE OUTROS..

OU ESMO ENTRE ESTADOS FENOMÊNICOS DE GRACELI.

OU SEJA, CONFORME SE TEM UMA APROXIMAÇÃO INFINITESIMAL ENTRE DOIS  ESTADOS NÃO SE PODE AFIRMAR SE SE ENCONTRA EM UM ESTADO OU EM OUTRO, OU NOS DOIS. [PARADOXO DO JACARÉ DE GRACELI].



UM ESTADO QUÂNTICO PODE EMARANHAR OUTRO ESTADO QUÂNTICO, E CONFORME O SDCTIE GRACELI.


OU SEJA, UMA PART´CILA NUM ESTADO QUÂNTICO G1, PODE INFLUIR SOBRE OUTRO ESTADO QUÂNTICO G2, À CERTA DISTÂNCIA, SEM SAIR DE SUA CONDIÇÃO DE ENERGIA QUÂNTICA ORIGINAL



entrelaçamento quântico (ou emaranhamento quântico, como é mais conhecido na comunidade científica) é um fenômeno da mecânica quântica que permite que dois ou mais objetos estejam de alguma forma tão ligados que um objeto não possa ser corretamente descrito sem que a sua contra-parte seja mencionada - mesmo que os objetos possam estar espacialmente separados por milhões de anos-luz. Isso leva a correlações muito fortes entre as propriedades físicas observáveis das diversas partículas subatômicas. O entrelaçamento quântico foi chamado de "ação fantasmagórica à distância" por Albert Einstein, que acreditava ser um evento impossível, sob as leis da mecânica quântica ortodoxa.[1][2]
Essas fortes correlações fazem com que as medidas realizadas numa delas pareçam estar a influenciar instantaneamente à outra com a qual ficou entrelaçada, e sugerem que alguma influência estaria a propagar-se instantaneamente, apesar da separação entre eles. Mas o entrelaçamento quântico não permite a transmissão a uma velocidade superior à da velocidade da luz, porque nenhuma informação útil pode ser transmitida desse modo. Só é possível a transmissão de informação usando um conjunto de estados entrelaçados em conjugação com um canal de informação clássico - aquilo a que se chama o teletransporte quântico. Isto dá a entender que tudo está conectado por "forças" que não vemos e que permanecem no tempo, ou estão fora do sistema que denominamos, entendemos ou concebemos como sistema temporal.
O entrelaçamento quântico é a base para tecnologias emergentes, tais como computação quânticacriptografia quântica e tem sido usado para experiências como o teletransporte quântico. Ao mesmo tempo, isto produz alguns dos aspectos teóricos e filosóficos mais perturbadores da teoria, já que as correlações previstas pela mecânica quântica são inconsistentes com o princípio intuitivo do realismo local, que diz que cada partícula deve ter um estado bem definido, sem que seja necessário fazer referência a outros sistemas distantes. Os diferentes enfoques sobre o que está a acontecer no processo do entrelaçamento quântico dão origem a diferentes interpretações da mecânica quântica.

Teorema de Bell[editar | editar código-fonte]

De acordo com a mecânica quântica, o spin de um elétron não pode ser conhecido com antecedência e ainda ser perfeitamente correlacionado com o outro. Einstein, em particular, não gostava dessa ideia porque ela dava a entender que a informação poderia ser enviada a partir de um elétron para o outro instantaneamente – quebrando uma regra que diz que nada pode viajar mais rápido do que a velocidade da luz. Em vez disso, a suposição de Peter Mosley, da Universidade de Bath, é a de que havia variáveis ocultas codificadas em cada elétron que poderiam determinar o resultado se nós conseguíssemos acessá-las.[3]
Na década de 1960, o cientista norte-irlandês John Bell veio com um método para testar a teoria de Einstein. A chamada desigualdade de Bell é satisfeita apenas se as ações em um local não puderem afetar outro lugar instantaneamente e os resultados das medições forem bem definidos de antemão – algo apelidado de “realismo local”. Bell mostrou, teoricamente, que o entrelaçamento quântico violaria sua teoria da desigualdade, mas teorias realistas contendo as variáveis ocultas, não. Isso ocorre porque a ligação entre partículas entrelaçadas é mais forte do que Einstein queria acreditar. Então, se a correlação medida entre pares de partículas de um experimento fosse acima de um determinado limiar, seria inconsistente com variáveis ocultas e a teoria do emaranhamento quântico estaria correta.[3]

Entrelaçamento quântico de uma única partícula[editar | editar código-fonte]

O entrelaçamento quântico de uma única partícula foi demonstrado por uma equipe da Universidade Griffiths. Usando uma técnica chamada "Homodyne Detection", eles dividiram um único fóton entre dois laboratórios e testaram se a medição de uma parte alterava o status da outra. Dessa forma, verificaram a ocorrência do entrelaçamento.[4]
Dois fótons são emitidos por uma fonte S e são propagados em duas direções opostas.
Na teoria, o entrelaçamento acontece quando duas partículas continuam conectadas apesar de estarem separadas. Dessa forma, o que acontece em uma partícula é refletido na outra. Por exemplo, um spin no sentido horário na primeira partícula será equivalente a um spin no sentido anti-horário na segunda, com o spin combinado das duas sendo zero. No entanto, medir uma partícula pode ser uma ação sobre ela, que, por sua vez, afetaria a outra partícula. Então seria impossível saber se a ação na segunda partícula é um resultado do entrelaçamento ou da medição.[5]
Mas existia a possibilidade do entrelaçamento quântico acontecer com uma única partícula. Se um único fóton for dividido em duas partes de pacote de onda ainda conectadas, essa conexão é considerada um entrelaçamento. No entanto, a partícula em si nunca é detectada em mais de um lugar - quando medida, sua função de onda entra em colapso. Isso foi descrito por Albert Einstein há 80 anos em um artigo e se tornou conhecido como o paradoxo EPR. A conclusão era que o entrelaçamento de uma única partícula seria impossível, ou que as definições da realidade física vindas da mecânica quântica estavam erradas.[5]
A equipe da Universidade de Griffiths verificou quantitativamente a "ação fantasmagórica" de Einstein, ao violar uma desigualdade de Einstein-Podolsky-Rosen em 0,042 ± 0,006. O experimento também verificou o emaranhamento do fóton único dividido, mesmo quando um lado não é confiável.[4]

Fontes de fótons emaranhados[editar | editar código-fonte]

Fontes de fótons emaranhados, conforme publicado na Nature, estão no cerne do processamento de informações quânticas fotônicas.[6] Desde a década de 1980, sabe-se como gerar pares de fótons emaranhados através do processo de conversão descendente paramétrica espontânea (SPDC), onde um feixe de fótons é dividido em pares emaranhados passando-o através de um cristal.[7] Para evitar muito ruído (isto é, múltiplos eventos de pares de fótons), os pares de fótons só podem ser produzidos com uma probabilidade de emissão baixa por pulso (p),[8] tipicamente p <0,1 por pulso de excitação. Essa ineficiência tem sido, portanto, tinha sido uma das desvantagem intrínseca dessas fontes.[9]
Muitas tecnologias fotônicas quânticas exigem a geração eficiente de pares emaranhados de fótons, mas até 2018 havia poucas maneiras de produzi-las de maneira confiável. Fontes baseadas em conversão paramétrica descendente operaram com uma eficiência muito baixa por pulso devido ao processo de geração probabilística. Os pontos quânticos de semicondutores podem emitir determinados pares de fótons emaranhados deterministicamente, mas ficam aquém devido à eficiência de extração extremamente baixa. Estratégias para extrair fótons únicos de pontos quânticos, como incorporá-los em cavidades ópticas de banda estreita, eram difíceis de traduzir para fótons emaranhados.[10]
Sistemas ópticos com aprimoramento quântico que operam dentro da região espectral de 2 a 2,5 μm podem ajudar a revolucionar aplicações emergentes em comunicações, sensoriamento e metrologia. Até 2019, fontes de fótons emaranhados foram realizadas principalmente na janela espectral de 700 a 1550 nm do infravermelho próximo. Em 2020, uma equipe de pesquisa de 15 membros, usando um cristal não linear feito de niobato de lítio, desenvolveu um método para gerar e detectar fótons quânticos emaranhados a um comprimento de onda de 2,1 micrômetros.[11] Os pares de fótons emaranhados no comprimento de onda de 2 micrômetros seriam significativamente menos influenciados pela radiação solar de fundo. Além disso, especialmente para comprimentos de onda de dois micrômetros, os fótons são menos absorvidos pelos gases atmosféricos, permitindo uma comunicação mais eficaz.[12]

Entrelaçamento quântico de mais de uma partícula[editar | editar código-fonte]

Uma equipe da Universidade de Ciência e Tecnologia da China (USTC) conseguiu entrelaçar 18 qubits em apenas seis fótons conectados[13]. Isso é um número sem precedentes de três qubits por fóton e um registro do número de qubits vinculados uns aos outros por meio do entrelaçamento quântico[14].




Um estado quântico é qualquer estado possível em que um sistema mecânico quântico possa se encontrar. Um estado quântico plenamente especificado pode ser descrito por um vetor de estado, por uma função de onda ou por um conjunto completo de números quânticos para um dado sistema. Vetores de estado quântico, na interpretação mais comum da mecânica quântica, não têm realidade física. O que tem significado físico são as probabilidades que podem ser calculadas a partir deles e não os vetores em si.[1] Ao estado quântico de menor energia possível dá-se o nome de estado quântico fundamental.
Na física quântica, o estado quântico se refere ao estado de um sistema isolado. Um estado quântico fornece uma distribuição de probabilidade para o valor de cada observável, ou seja, para o resultado de cada medida possível no sistema. O conhecimento do estado quântico juntamente com as regras para a evolução do sistema no tempo esgota tudo o que se pode prever sobre o comportamento do sistema.
Uma mistura de estados quânticos é novamente um estado quântico. Os estados quânticos que não podem ser escritos como uma mistura de outros estados são chamados estados quânticos puros, todos os outros estados são chamados de estados quânticos mistos.
Matematicamente, um estado quântico puro pode ser representado por um raio em um espaço de Hilbert sobre os números complexos.[2] O raio é um conjunto de vetores diferentes de zero diferindo apenas por um fator escalar complexo; qualquer um deles pode ser escolhido como um vetor de estado para representar o raio e, portanto, o estado. Um vetor unitário é normalmente escolhido, mas seu fator de fase pode ser escolhido livremente de qualquer maneira. No entanto, esses fatores são importantes quando vetores de estado são adicionados para formar uma superposição.
O espaço de Hilbert é uma generalização do espaço euclidiano comum[3] e contém todos os possíveis estados quânticos puros do sistema dado.[4] Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.
Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:
que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.
Um estado quântico misto corresponde a uma mistura probabilística de estados puros; no entanto, diferentes distribuições de estados puros podem gerar estados mistos equivalentes (isto é, fisicamente indistinguíveis). Os estados mistos são descritos pelas chamadas matrizes de densidade. Um estado puro também pode ser reformulado como uma matriz de densidade; desta forma, os estados puros podem ser representados como um subconjunto dos estados mistos mais gerais.
Por exemplo, se o spin de um elétron é medido em qualquer direção, por exemplo com um experimento de Stern-Gerlach, há dois resultados possíveis: para cima ou para baixo. O espaço de Hilbert para o spin do elétron é, portanto, bidimensional. Um estado puro aqui é representado por um vetor complexo bidimensional , com um comprimento de um; isto é, com
onde  e  são valores absolutos  e . Um estado misto, neste caso, tem a estrutura de uma matriz  isso é, hermitiano, positivo-definido, e tem o traço 1.
Antes que uma medição particular seja realizada em um sistema quântico, a teoria geralmente fornece apenas uma distribuição de probabilidade para o resultado, e a forma que essa distribuição assume é completamente determinada pelo estado quântico e pelo observável que descreve a medição. Essas distribuições de probabilidade surgem tanto para estados mistos quanto para estados puros: é impossível na mecânica quântica (ao contrário da mecânica clássica) preparar um estado no qual todas as propriedades do sistema sejam fixas e certas. Isso é exemplificado pelo princípio da incerteza e reflete uma diferença central entre a física clássica e a física quântica. Mesmo na teoria quântica, no entanto, para todo observável existem alguns estados que têm um valor exato e determinado para aquele observável.[3][5] 


ESTADO GRACELI QUÂNTICO ENTRELAÇADO = [X]

entrelaçamento quântico

X


X

SDCTIE GRACELI.

UM ESTADO QUÂNTICO PODE EMARANHAR OUTRO ESTADO QUÂNTICO, E CONFORME O SDCTIE GRACELI.


OU SEJ, UMA PART´CILA NUM ESTADO QUÂNTICO G1, PODE INFLUIR SOBRE OUTRO ESTADO QUÂNTICO À CERTA DISTÂNCIA, SEM SAIR DE SUA CONDIÇÃO DE ENERGIA QUÂNTICA ORIGINAL



entrelaçamento quântico (ou emaranhamento quântico, como é mais conhecido na comunidade científica) é um fenômeno da mecânica quântica que permite que dois ou mais objetos estejam de alguma forma tão ligados que um objeto não possa ser corretamente descrito sem que a sua contra-parte seja mencionada - mesmo que os objetos possam estar espacialmente separados por milhões de anos-luz. Isso leva a correlações muito fortes entre as propriedades físicas observáveis das diversas partículas subatômicas. O entrelaçamento quântico foi chamado de "ação fantasmagórica à distância" por Albert Einstein, que acreditava ser um evento impossível, sob as leis da mecânica quântica ortodoxa.[1][2]
Essas fortes correlações fazem com que as medidas realizadas numa delas pareçam estar a influenciar instantaneamente à outra com a qual ficou entrelaçada, e sugerem que alguma influência estaria a propagar-se instantaneamente, apesar da separação entre eles. Mas o entrelaçamento quântico não permite a transmissão a uma velocidade superior à da velocidade da luz, porque nenhuma informação útil pode ser transmitida desse modo. Só é possível a transmissão de informação usando um conjunto de estados entrelaçados em conjugação com um canal de informação clássico - aquilo a que se chama o teletransporte quântico. Isto dá a entender que tudo está conectado por "forças" que não vemos e que permanecem no tempo, ou estão fora do sistema que denominamos, entendemos ou concebemos como sistema temporal.
O entrelaçamento quântico é a base para tecnologias emergentes, tais como computação quânticacriptografia quântica e tem sido usado para experiências como o teletransporte quântico. Ao mesmo tempo, isto produz alguns dos aspectos teóricos e filosóficos mais perturbadores da teoria, já que as correlações previstas pela mecânica quântica são inconsistentes com o princípio intuitivo do realismo local, que diz que cada partícula deve ter um estado bem definido, sem que seja necessário fazer referência a outros sistemas distantes. Os diferentes enfoques sobre o que está a acontecer no processo do entrelaçamento quântico dão origem a diferentes interpretações da mecânica quântica.

Teorema de Bell[editar | editar código-fonte]

De acordo com a mecânica quântica, o spin de um elétron não pode ser conhecido com antecedência e ainda ser perfeitamente correlacionado com o outro. Einstein, em particular, não gostava dessa ideia porque ela dava a entender que a informação poderia ser enviada a partir de um elétron para o outro instantaneamente – quebrando uma regra que diz que nada pode viajar mais rápido do que a velocidade da luz. Em vez disso, a suposição de Peter Mosley, da Universidade de Bath, é a de que havia variáveis ocultas codificadas em cada elétron que poderiam determinar o resultado se nós conseguíssemos acessá-las.[3]
Na década de 1960, o cientista norte-irlandês John Bell veio com um método para testar a teoria de Einstein. A chamada desigualdade de Bell é satisfeita apenas se as ações em um local não puderem afetar outro lugar instantaneamente e os resultados das medições forem bem definidos de antemão – algo apelidado de “realismo local”. Bell mostrou, teoricamente, que o entrelaçamento quântico violaria sua teoria da desigualdade, mas teorias realistas contendo as variáveis ocultas, não. Isso ocorre porque a ligação entre partículas entrelaçadas é mais forte do que Einstein queria acreditar. Então, se a correlação medida entre pares de partículas de um experimento fosse acima de um determinado limiar, seria inconsistente com variáveis ocultas e a teoria do emaranhamento quântico estaria correta.[3]

Entrelaçamento quântico de uma única partícula[editar | editar código-fonte]

O entrelaçamento quântico de uma única partícula foi demonstrado por uma equipe da Universidade Griffiths. Usando uma técnica chamada "Homodyne Detection", eles dividiram um único fóton entre dois laboratórios e testaram se a medição de uma parte alterava o status da outra. Dessa forma, verificaram a ocorrência do entrelaçamento.[4]
Dois fótons são emitidos por uma fonte S e são propagados em duas direções opostas.
Na teoria, o entrelaçamento acontece quando duas partículas continuam conectadas apesar de estarem separadas. Dessa forma, o que acontece em uma partícula é refletido na outra. Por exemplo, um spin no sentido horário na primeira partícula será equivalente a um spin no sentido anti-horário na segunda, com o spin combinado das duas sendo zero. No entanto, medir uma partícula pode ser uma ação sobre ela, que, por sua vez, afetaria a outra partícula. Então seria impossível saber se a ação na segunda partícula é um resultado do entrelaçamento ou da medição.[5]
Mas existia a possibilidade do entrelaçamento quântico acontecer com uma única partícula. Se um único fóton for dividido em duas partes de pacote de onda ainda conectadas, essa conexão é considerada um entrelaçamento. No entanto, a partícula em si nunca é detectada em mais de um lugar - quando medida, sua função de onda entra em colapso. Isso foi descrito por Albert Einstein há 80 anos em um artigo e se tornou conhecido como o paradoxo EPR. A conclusão era que o entrelaçamento de uma única partícula seria impossível, ou que as definições da realidade física vindas da mecânica quântica estavam erradas.[5]
A equipe da Universidade de Griffiths verificou quantitativamente a "ação fantasmagórica" de Einstein, ao violar uma desigualdade de Einstein-Podolsky-Rosen em 0,042 ± 0,006. O experimento também verificou o emaranhamento do fóton único dividido, mesmo quando um lado não é confiável.[4]

Fontes de fótons emaranhados[editar | editar código-fonte]

Fontes de fótons emaranhados, conforme publicado na Nature, estão no cerne do processamento de informações quânticas fotônicas.[6] Desde a década de 1980, sabe-se como gerar pares de fótons emaranhados através do processo de conversão descendente paramétrica espontânea (SPDC), onde um feixe de fótons é dividido em pares emaranhados passando-o através de um cristal.[7] Para evitar muito ruído (isto é, múltiplos eventos de pares de fótons), os pares de fótons só podem ser produzidos com uma probabilidade de emissão baixa por pulso (p),[8] tipicamente p <0,1 por pulso de excitação. Essa ineficiência tem sido, portanto, tinha sido uma das desvantagem intrínseca dessas fontes.[9]
Muitas tecnologias fotônicas quânticas exigem a geração eficiente de pares emaranhados de fótons, mas até 2018 havia poucas maneiras de produzi-las de maneira confiável. Fontes baseadas em conversão paramétrica descendente operaram com uma eficiência muito baixa por pulso devido ao processo de geração probabilística. Os pontos quânticos de semicondutores podem emitir determinados pares de fótons emaranhados deterministicamente, mas ficam aquém devido à eficiência de extração extremamente baixa. Estratégias para extrair fótons únicos de pontos quânticos, como incorporá-los em cavidades ópticas de banda estreita, eram difíceis de traduzir para fótons emaranhados.[10]
Sistemas ópticos com aprimoramento quântico que operam dentro da região espectral de 2 a 2,5 μm podem ajudar a revolucionar aplicações emergentes em comunicações, sensoriamento e metrologia. Até 2019, fontes de fótons emaranhados foram realizadas principalmente na janela espectral de 700 a 1550 nm do infravermelho próximo. Em 2020, uma equipe de pesquisa de 15 membros, usando um cristal não linear feito de niobato de lítio, desenvolveu um método para gerar e detectar fótons quânticos emaranhados a um comprimento de onda de 2,1 micrômetros.[11] Os pares de fótons emaranhados no comprimento de onda de 2 micrômetros seriam significativamente menos influenciados pela radiação solar de fundo. Além disso, especialmente para comprimentos de onda de dois micrômetros, os fótons são menos absorvidos pelos gases atmosféricos, permitindo uma comunicação mais eficaz.[12]

Entrelaçamento quântico de mais de uma partícula[editar | editar código-fonte]

Uma equipe da Universidade de Ciência e Tecnologia da China (USTC) conseguiu entrelaçar 18 qubits em apenas seis fótons conectados[13]. Isso é um número sem precedentes de três qubits por fóton e um registro do número de qubits vinculados uns aos outros por meio do entrelaçamento quântico[14].




Um estado quântico é qualquer estado possível em que um sistema mecânico quântico possa se encontrar. Um estado quântico plenamente especificado pode ser descrito por um vetor de estado, por uma função de onda ou por um conjunto completo de números quânticos para um dado sistema. Vetores de estado quântico, na interpretação mais comum da mecânica quântica, não têm realidade física. O que tem significado físico são as probabilidades que podem ser calculadas a partir deles e não os vetores em si.[1] Ao estado quântico de menor energia possível dá-se o nome de estado quântico fundamental.
Na física quântica, o estado quântico se refere ao estado de um sistema isolado. Um estado quântico fornece uma distribuição de probabilidade para o valor de cada observável, ou seja, para o resultado de cada medida possível no sistema. O conhecimento do estado quântico juntamente com as regras para a evolução do sistema no tempo esgota tudo o que se pode prever sobre o comportamento do sistema.
Uma mistura de estados quânticos é novamente um estado quântico. Os estados quânticos que não podem ser escritos como uma mistura de outros estados são chamados estados quânticos puros, todos os outros estados são chamados de estados quânticos mistos.
Matematicamente, um estado quântico puro pode ser representado por um raio em um espaço de Hilbert sobre os números complexos.[2] O raio é um conjunto de vetores diferentes de zero diferindo apenas por um fator escalar complexo; qualquer um deles pode ser escolhido como um vetor de estado para representar o raio e, portanto, o estado. Um vetor unitário é normalmente escolhido, mas seu fator de fase pode ser escolhido livremente de qualquer maneira. No entanto, esses fatores são importantes quando vetores de estado são adicionados para formar uma superposição.
O espaço de Hilbert é uma generalização do espaço euclidiano comum[3] e contém todos os possíveis estados quânticos puros do sistema dado.[4] Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.
Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:
que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.
Um estado quântico misto corresponde a uma mistura probabilística de estados puros; no entanto, diferentes distribuições de estados puros podem gerar estados mistos equivalentes (isto é, fisicamente indistinguíveis). Os estados mistos são descritos pelas chamadas matrizes de densidade. Um estado puro também pode ser reformulado como uma matriz de densidade; desta forma, os estados puros podem ser representados como um subconjunto dos estados mistos mais gerais.
Por exemplo, se o spin de um elétron é medido em qualquer direção, por exemplo com um experimento de Stern-Gerlach, há dois resultados possíveis: para cima ou para baixo. O espaço de Hilbert para o spin do elétron é, portanto, bidimensional. Um estado puro aqui é representado por um vetor complexo bidimensional , com um comprimento de um; isto é, com
onde  e  são valores absolutos  e . Um estado misto, neste caso, tem a estrutura de uma matriz  isso é, hermitiano, positivo-definido, e tem o traço 1.
Antes que uma medição particular seja realizada em um sistema quântico, a teoria geralmente fornece apenas uma distribuição de probabilidade para o resultado, e a forma que essa distribuição assume é completamente determinada pelo estado quântico e pelo observável que descreve a medição. Essas distribuições de probabilidade surgem tanto para estados mistos quanto para estados puros: é impossível na mecânica quântica (ao contrário da mecânica clássica) preparar um estado no qual todas as propriedades do sistema sejam fixas e certas. Isso é exemplificado pelo princípio da incerteza e reflete uma diferença central entre a física clássica e a física quântica. Mesmo na teoria quântica, no entanto, para todo observável existem alguns estados que têm um valor exato e determinado para aquele observável.[3][5] 


ESTADO GRACELI QUÂNTICO ENTRELAÇADO = [X]

entrelaçamento quântico

X


X

SDCTIE GRACELI.